Leetcode每日算法--环形链表 II

难度中等。给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

[142. 环形链表 II](https://leetcode-cn.com/problems/linked-list-cycle-ii/)

难度中等

给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意,pos 仅仅是用于标识环的情况,并不会作为参数传递到函数中。

说明:不允许修改给定的链表。

进阶:

  • 你是否可以不用额外空间解决此题?

示例 1:

图片

输入:head = [3,2,0,-4], pos = 1 输出:返回索引为 1 的链表节点 解释:链表中有一个环,其尾部连接到第二个节点。 示例 2:

图片

输入:head = [1,2], pos = 0 输出:返回索引为 0 的链表节点 解释:链表中有一个环,其尾部连接到第一个节点。 示例 3:

图片

输入:head = [1], pos = -1 输出:返回 null 解释:链表中没有环。

方法一:哈希表

思路与算法

一个非常直观的思路是:我们遍历链表中的每个节点,并将它记录下来;一旦遇到了此前遍历过的节点,就可以判定链表中存在环。借助哈希表可以很方便地实现。

public class Solution {
    public ListNode detectCycle(ListNode head) {
        ListNode pos = head;
        Set<ListNode> visited = new HashSet<ListNode>();
        while (pos != null) {
            if (visited.contains(pos)) {
                return pos;
            } else {
                visited.add(pos);
            }
            pos = pos.next;
        }
        return null;
    }
}

复杂度分析

  • 时间复杂度:O(N)O(N),其中 NN 为链表中节点的数目。我们恰好需要访问链表中的每一个节点。

  • 空间复杂度:O(N)O(N),其中 NN 为链表中节点的数目。我们需要将链表中的每个节点都保存在哈希表当中。

方法二:快慢指针

思路与算法

我们使用两个指针,fast 与 slow。它们起始都位于链表的头部。随后,slow 指针每次向后移动一个位置,而 fast 指针向后移动两个位置。如果链表中存在环,则 fast 指针最终将再次与slow 指针在环中相遇。

如下图所示,设链表中环外部分的长度为 aa。slow 指针进入环后,又走了 bb 的距离与 fast 相遇。此时,fast 指针已经走完了环的 nn 圈,因此它走过的总距离为 a+n(b+c)+b=a+(n+1)b+nca+n(b+c)+b=a+(n+1)b+nc。

tu

根据题意,任意时刻,\textit{fast}fast 指针走过的距离都为 \textit{slow}slow 指针的 22 倍。因此,我们有

a+(n+1)b+nc=2(a+b) \implies a=c+(n-1)(b+c) a+(n+1)b+nc=2(a+b)⟹a=c+(n−1)(b+c)

有了 a=c+(n-1)(b+c)a=c+(n−1)(b+c) 的等量关系,我们会发现:从相遇点到入环点的距离加上 n-1n−1 圈的环长,恰好等于从链表头部到入环点的距离。

因此,当发现 slow 与 fast 相遇时,我们再额外使用一个指针 ptr。起始,它指向链表头部;随后,它和 slow 每次向后移动一个位置。最终,它们会在入环点相遇。

public class Solution {
    public ListNode detectCycle(ListNode head) {
        if (head == null) {
            return null;
        }
        ListNode slow = head, fast = head;
        while (fast != null) {
            slow = slow.next;
            if (fast.next != null) {
                fast = fast.next.next;
            } else {
                return null;
            }
            if (fast == slow) {
                ListNode ptr = head;
                while (ptr != slow) {
                    ptr = ptr.next;
                    slow = slow.next;
                }
                return ptr;
            }
        }
        return null;
    }
}

复杂度分析

  • 时间复杂度:O(N)O(N),其中 NN 为链表中节点的数目。在最初判断快慢指针是否相遇时,slow 指针走过的距离不会超过链表的总长度;随后寻找入环点时,走过的距离也不会超过链表的总长度。因此,总的执行时间为 O(N)+O(N)=O(N)O(N)+O(N)=O(N)。

  • 空间复杂度:O(1)O(1)。我们只使用了slow,fast,ptr 三个指针。